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Abstract

A simple parameterization scheme for a complex turbulent flow using nondimensional parameters

coming from the Reynolds stress equations is given. Definitions and brief descriptions of the physical

significance of several nondimensional parameters that are used to characterize turbulence from the

viewpoint of single-point turbulence closures are given. These nondimensional parameters reflect

measures of 1) the spectral band width of the turbulence, 2) deviations from the ideal Kolmogorov

behavior, 3) the relative magnitude, orientation, and temporal duration of the deformation to

which the turbulence is subjected, 4) one and two-point measures of the large and small scale

anisotropy of the turbulence and 5) inhomogeneity. This is an attempt to create a more systematic

methodology for the diagnosis and classification of turbulent flows as well as in the development,

validation and application of turbulence model strategies. The parameters serve also to indicate

the adequacy of various assumptions made in single-point turbulence models and in suggesting the

appropriate turbulence strategy for a particular complex flow. The compilation will be of interest

to experimentalists and to those involved in either computing turbulent flows or whose interests

lies in verifying the adequacy of the phenomenologieal beliefs used in turbulence closures.

1This research was supported by the National Aeronautics and Space Administration under NASA Contract No.

NASl-19480 while the author was in residence at the Institute for Computer Applications in Science and Engineering

(ICASE), NASA Langley Research Center, Hampton, VA 23681-0001.





1. Introduction

As turbulence models move into an area in which they are expected to calculate complex flows

it becomes more relevant to better understand the physics of different classes of flows. A list of

nondimensional diagnostic statistics and their physical interpretation and relevance to different

turbulence strategies is the subject of this article. The nondimensional numbers that are used to

understand laminar flows come from scaling the equations for the conservation of mass, momentum

and energy. These nondimensional numbers reflect primarily molecular phenomena that are of

secondary importance in turbulent flows. In turbulent flows there are several additional equations,

the second-order moments equations 2, that describe the evolution of the turbulence. A nondi-

mensionalization of these equations produces a very different and important set of dimensionless
numbers essential for the characterization of a turbulent flow. These nondimensional numbers re-

flect properties of the flow, not the fluid; they describe the intensity, orientation, length and time

scales of the turbulence and also the structure of the mean deformation straining the turbulence.

This article is an attempt to elucidate the parameters useful for 1) classifying a turbulent flow,

and 2) understanding the assumptions underlying the different classes of turbulence closures. The

parameters given come from, primarily, a single-point closure framework. As such they represent

the application of simple ideas from kinetic theory to models for turbulence. This is, presently, the

most fully developed, easily available and self consistent approach available for complex engineering

flows. It is to be expected that there are a very substantial number of turbulent flows that do not

fall into the class of flows subsumable by these simple kinetic theory metaphors. The parameters

compiled here will serve to distinguish these different classes of flows.

In complex flows there is a scarcity of experimental data presented in a way that highlights the

physics in a way most suitable for turbulence model development. This article attempts to provide

the experimentalist (DNS, LES or laboratory), whose customer is sometimes the turbulence mod-

eler, with a systematic delineation of the ideas and parameters that are used to understand, create

and calculate turbulence closures. An appropriately documented experiment, from the viewpoint of

a modeler, is an exceptionally valuable commodity not only for understanding the physics but also

for assessing the plethora of models contending as accurate descriptions of the physics. This article

is also an attempt to provide the turbulence model evaluator and user with a set of parameters that

can be used to judge the adequacy of a particular turbulence model. The use of the parameters

given here will help understand a flow from a more universal perspective in a way that brings out

the physics common or different across several classes of flows.

The procedural viewpoint taken in this article is to describe briefly the ideal turbulence: the high

Reynolds number, homogeneous, fully developed, statistically stationary, isotropic, Kolmogorov

turbulence. Turbulent flows of engineering interest will deviate from the Kolmogorov ideal. A gen-

eral turbulent flow can be expected to deviate from the ideal when there is 1) no extended spectral

gap necessary for the small scale statistical equilibrium, 2) mean deformation, 3) nonstationarity,

4) anisotropy, and 5) inhomogeneity. The quantification, interpretation and implication of these

departures from the ideal are the subject of this document. In addition, two general types of turbu-

2In a purely incompressible mechanical turbulence - no heat transfer and no mass fluxes - these equations axe the

Reyno]ds stress equations



lent flows are distinguished: a slowly evolving nonlinear turbulence for which simple kinetic theory

ideas are applicable and closures can be effected with local constitutive type relations and a rapidly

evolving linear turbulence in which theories such as the Rapid Distortion Theory are applicable,

Hunt (1973), Hunt and Carruthers (1992).

The organization of this article is now sketched.

In the next section the nomenclature and some basic equations are given. These equations form

the basis of the system that will be used in subsequent developments. The third section contains

a brief description of a Kolmogorov turbulence. Issues relating to the assessment of the small

scale equilibrium assumptions and the importance of a spectral gap are also described in this third

section. Subsequently deviations and measures of these deviations from the Kolmogorov archetype

are described. The quantification of these departures from the ideal are the primary subject of the
rest of the document.

The fourth section addresses the classification of the mean velocity field and thus the mean defor-

mation to which the turbulence is subjected. This includes nonequllibrium effects as well as history
effects.

Additional sections define several parameters useful in describing the turbulence - its intensity,

orientation and coherence. This includes both large and small scale turbulence quantities. The

main section of the article closes with various issues related to inhomogeneity and some higher-
order moments of the turbulence.

The reader's attention is directed to the synopsis in the penultimate section; it provides a useful

and short overview of the sometimes tedious earlier sections. It also concretizes many of these ideas

with examples taken from two simple turbulent flows. Readers of early drafts of this manuscript

have indicated the utility of reading the synopsis before attempting the body of the article.

In this article primary attention is directed to the incompressible turbulence problem. No attention

is spent on fully empirical closures such as the zero (algebraic models) or one equation turbulence

closures. The present exposition is directed towards two-equation turbulence models such as the

k - e (or k - w) closures with Boussinesq or algebraic closures for the Reynolds stresses and also

second-order closures in which an evolution equation for the Reynolds stresses is solved.

2. Nomenclature and equations
Upper case letters will denote (first-order) mean quantities and lower case letters will denote the

fluctuating quantities. A comma followed by a subscript denotes differentiation with respect to

the coordinate in the direction that the value of the subscript takes. Repeated subscripts denote

summation over the values the indices take. Quantities with an asterisk denote the full field, mean

and fluctuating: u7 = Ui + u_. The averaging operation is indicated using the angle brackets,

< u_uj >. The dependent variables are decomposed according to

u* = Ui+ui where<ui >=0 (1)

p*= P+p where <p>=0 (2)

Substituting the decomposition into the Navier-Stokes equations and applying the averaging oper-



ator < > produces,for themeanmomentumequationsof an incompressibleflow

D

D'-_ Ui + < u_up >,v = - P,_ + _Ui,jj. (3)

Thus for high Reynolds number turbulence, except in the case for rapidly accelerating flows, the

turbulence sets the changes in the mean momentum distribution. The pressure has been normalized

by the density. A set of equations for the Reynolds stresses is derived by subtracting the mean

equations for UiUj from the equations for ui uj.

D

D----t< uiuj >= - <: uiu p > Uj,p - < UjUp > Vi,p -]-IIij - _ij

- [< pui > _pj+ < puj > _p+ < u_ujup > +_, < u_uj >,p],p. (4)

These are the exact and only equations describing the evolution of the Reynolds stresses. Any

turbulence model is, to a greater or lesser degree, an approximation to the physics embodied in these

equations. In flows for which an energy equation is required (where heat transfer or compressibility

is important) additional equations are carried for the turbulent fluxes of the energy.

The form of the equations above reflects the following substitutions: the pressure-strain correlation

is IIij =< p (ui,j +uj,i ) >. The fluctuating pressure, p, involves an integral over the whole flow

field and thus covariances with the pressure involve two-point statistics. It is usual to represent this

unknown term as a function of local quantities and closure is achieved in terms of the local, single-

point, turbulence quantities. Implicit in this is the assumption that the correlation length scale is

the same in all directions. There are a variety of flow situations in which such an approximation

produces adequate results; there are flow situations in which such an approximation is inadequate.

The contraction of the second-order equations produces the equation for the kinetic energy, k =

1/2 < ujuj >,

D

D-"t k = - < ujuv > Uj,p - [< pup > + < ujujuv > +,k,v ],v - _ (5)

without the complicating pressure-strain terms, Ilij since Iljj = 0. The term in the square brackets,

is called the transport term. It is, in addition to the mean advection, responsible for non-local

aspects of turbulence field. Both terms, the pressure transport and the turbulent transport -

transport by the fluctuating pressure and velocity are important in inhomogeneous flows.

The first and last terms on the right hand side are responsible for the production, Pk = -- < UjUp >

Uj,p and dissipation, E = _ < ui,j ui,j >, of the energy of the turbulence. The production terms,

which in many flows are the most important terms, require no modeling in Reynolds stress closures.

In two-equation closures the Reynolds stresses are algebraically related to the mean deformation

and the production terms are no longer exact.

In the context of k- E and k-w type closures the Reynolds stress term appearing in the production

and in the mean momentum equations are typically of the form

k k 1

3 z z -3

3



The first two terms are the well known Boussinesq eddy viscosity approximation. The mean strain

and rotation tensors are defined as Sij = ½[Ui,j+Uj,_], Wij = ½[Ui,j-Uj,i]. In a simple planar

shear flow, Ui,j= U1,2$il_2j and S 2 = W 2 = ½U_,2. Terms quadratic in the mean rotation are

not carried as they are inconsistent with results for the rotation of isotropic turbulence, Speziale

(1987). The utility of these algebraic expressions varies from situation to situation depending on the

importance of non.local effects in time and space. Consider that these are algebraic representations

to the solutions of the nonlinear partial integro-differential equations for the < u_uj >. The various

eddy viscosities can in genera] be a function of k, E and some scalar measure of the strength of the
mean strain or rotation.

Second-order closures constitute a class of turbulence models in which evolution equations are

carried for the mean flow (mass, momentum, and energy) and for the turbulent fluxes of mass,

momentum (Reynolds stresses), and energy. The idea here is to carry the first-order or mean

equations, _ U_, exactly and model the unclosed terms in the second-order equations, D < uiuj >.

The unclosed terms are modeled in terms of quantities for which equations are carried: the first

and second-order quantities. Rather than modeling the Reynolds stresses directly (and thus the

mean flow equations) one models higher-order effects in higher-order equations with (presumably)

smaller error in the Reynolds stresses due to the lesser importance of the terms being modeled. The

models for the unclosed terms are arrived at by requiring some sort of mathematical or physical

consistency with known experimental or analytical results. They typically involve, to a greater or

lesser degree, phenomenological arguments, handwaving, and empirical curve fitting. In a large

number of flows the most important terms, in the dynamically significant portions of the flow, are

the production terms which are carried exactly.

A discussion of the merits of different models in specific flow situations is not the purpose of this

article; the reader interested in an overview of these issues is referred to Launder (1989) or Hanjalic

(1994). The subject of this article is solely concerned with the diagnostic parameters necessary to

characterize a complex flow. These parameters are relevant to understanding the physics and are

also used to assess the adequacy of the underlying assumptions in different styles of closures.

The Reynolds stress or k equations are accompanied by an equation for either the dissipation, _ or

a quantity sometimes called the specific dissipation, w = s/k. The dissipation tensor is given by

E_j = 2v < uj,p ui,v >. The dissipation of the turbulence energy, E, is related to the homogeneous

portion of the trace of the dissipation tensor. The trace of the dissipation tensor is

¢ii= 2 v [< Wk_ak > + < upuq >,pq]

and the dissipation of the kinetic energy of the turbulence, _, is thus proportional to the enstrophy

and given by E = ½Ejj = v < ww >. Bradshaw and Perot (1993) have indicated, using low Reynolds

number DNS, that for an incompressible turbulence, the enstrophy makes the most important

contribution to the dissipation. In the above manipulations the identities u_,7, = up,_ - ep_jwj where

the vorticity, w_ = e_jkuj,k, have been used to express the dissipation in terms of the vorticity.

Thus < _jwj >=< uj,p Uj,p > -- < Uj,pUp,j >:< Uj,p Uj,p > -- < UqUp >,qp-'_ 2 < Uq,q Up _>,p- <

Uq,q Up,p >. where, < ui, p Up, i >_.( uiu p >,ip - 2 < ui, i Up >,p 2v ( ui, i Up,p > has been used.

The modeled dissipation equation, with a gradient transport assumption for the turbulent transport,
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is typically assumedto beof theform
D
D---te + [vea_-le,q ],q = -[c_lPk - c_2e] e/k, (7)

where ve = C, k2/e. The equation is arrived at by, more or less, phenomenological reasoning. There

are some very important inadequacies with this equation; they are typically ignored or resolved

using ad hoc corrections.

A few more definitions are necessary. The turbulent Reynolds number is given by Re = _zg/v where

is a characteristic magnitude of the velocity fluctuation, say _2 = -_k and _ is a length scale

characterizing the spatial correlation of the turbulence. The quantity _ is sometimes identified with

an integral length scale of the turbulence the definition of which is given below. Using the high
(2k31/2 the followingReynolds number Kolmogorov scaling for a length scale, l ,-_ fi3/c, with _ ,,_ _ 3 J ,

Reynolds number

4 k 2

Re= (S)

is obtained. This is not to be confused with the mean flow Reynolds number: Re = UooL/v.

The two are related by Re = (fi/Uoo)(l/L)Re. The mean strain and mean rotation rates are

sometimes made nondimensional with the "natural" time scale of the turbulence k/e: S = (Sk/e),

I;V = (Wk/e). Here S and W are suitable norms of the strain and rotation tensors S = (SijSij) 1/2

and W = (WqWq) 1/2. In a simple shear flow S = W = _2U1,2.

3. Small scale equilibrium and isotropy
Most current engineering turbulence model developments assume a statistical equilibrium and thus a

universal behavior of the small scales of a turbulent flow. These notions reflect an ideal turbulence

with presumptions of statistical stationarity, homogeneity, and isotropy at very high Reynolds

number, Re, as envisioned in the seminal papers of Kolmogorov (1941a, 1941b) - a turbulence in a

statistical equilibrium independent of initial conditions and boundary conditions. The consequences

of these ideas are set forth in the next two subsections. Deviations from the Kolmogorov ideal

turbulence, as occur in engineering flows, are then described.

A plausible energy spectrum as a function of wave number (inverse length scale) for the type
turbulence assumed in the current developments in single-point turbulence closures is shown in

Figure 1. In turbulence with a large range of scales there is expected to be a featureless portion

of the spectrum (having a power law behavior) separating the large scales of the motion from the

small scales. This is called the inertial subrange and for an ideal Kolmogorov turbulence has a

-5/3 power law behavior.

The existence of an inertial subrange is considered evidence of a spectral gap separating and decor-

relating the smallest scales of the motion from the largest making arguments for a statistical small

scale equilibrium possible, with its implications of a universal small scale behavior, plausible.

The scales range from the large energy containing range, hl ,-, 1 down to the small dissipative

scales of the motion, nr] ,- 1. The outer and inner length scales, t and _7, are called, respectively,

the production and the Kolmogorov or dissipative scales of the motion.

5
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Figure 1: Model spectrum for a fully developed turbulence

The phenomenological underpinning to most turbulence modeling strategies is the idea that the

nonlinearity of the equations acts to cascade energy to the small scales scrambling information

about the large scales. One consequence of this idea is that if the spatial and temporal scales of

the energy containing and dissipative scales of the motion are disparate enough then one can argue

for the plausibility of a statistical equilibrium of the small scales of the flow. The large scales of a

turbulent motion are imagined to be effectively inviscid and characterized by length, velocity and

frequency scales [_, fi, _/_]. The smallest scales of the motion are essentially low Reynolds number

viscous motions. The two scales of the motion are linked together by the cascade rate, E. The

dissipative processes occurring in the small viscous scales are related to the large scales of the flow

by the fact that, in an equilibrium flow, it is equal to the cascade rate of energy from the large
scales.

Dimensional analysis using the quantities [e, u] produces the following characteristic length, velocity,

and time scales for the dissipative or Kolmogorov scales of the motion:

,7= '/4, v = = (9)

The strain rate of the smallest scales of the motion, s, scale as r -t thus s = (_/v)l/2.

Dimensional reasoning, using the cascade rate and a characteristic scale for the velocity also pro-
duces a length scale. It is

= o_(--_k-)3/2/E. (10)

The characteristic velocity has been taken to be fi2 = 2 k and a is an order one quantity. In practice

has been found to be a flow dependent quantity, Sreenivasan (1995). This scaling is appropriate

for high Reynolds number, ideal Kolmogorov turbulence.

The next few sections are related to an assessment of the separation of the large and small scales
of the motion.



Temporal and spatial spectral bandwidth

The ratio of the small to the large length scales _/_ determines the scale separation and is an

important quantity in assessing the validity of the diverse modeling assumptions. The ratio of the

small to large spatial scale, _/_, is an indication of the bandwidth of the process. It can be related

to the turbulent Reynolds number Rt = fi£/u, using the definitions given above:

-_ = n_-n/4 (11)

where _2 = _k is related to the kinetic energy of the turbulence. The scaling _ ,_ _3/E has been

used. Similar arguments lead to a temporal bandwidth of the turbulence:

r 1/2
-- = R; (12)
T

where T ,-_ _/fi. In general a turbulent Reynolds number, Rt > 104, at least, before a legitimate
n 3/4 -- 1/2

inertial subrange begins to appear. The fact that ne t >> 1 and that ne t >> 1 is an indication

of the adequacy of the assumption of the statistical equilibrium of the small scales of the motion.

Small scale isotropy

Closely related to the extent of the bandwidth of the process is a useful approximation made

regarding the isotropy of the dissipative scales. The cascade is assumed to scramble all directional

preferences of the large scales so that the small scales are in a state of statistical isotropy. The

spectral characteristics of such a process imply a broad and featureless spectrum as shown in Figure

1. The consequences of such an assumption are that Taylor (1935),

1 1

< Ul,1 U1,1 >_: _ < U2,1 U2,1 >= _ < it3,1 U3,1 :> (13)

and that

1 . (14)---- _ U1_1Ul_1 _- _ Ul_2U2_l _ _ U3_1U1_3 _ _ <: "tt3,2U2_3 _
2

The dissipation tensor can then be written in terms of one scalar s = u < ww >= 15L, <: ul,1 Ul,1 >,

Batchelor (1953), Townsend (1976). (In point of fact the small scales will always be statistically

anisotropic however small: this has been made very clear by a discussion of the physics by Lumley

(1992) and shown, for turbulence in the presence of a mean shear, from a mathematical point of

view in a clear and pithy development by Durbin and Speziale (1991). (Note that their argument

is independent of Rt and thus the bandwidth of the process).)

Associated with the dissipation is another length scale, the Taylor microscale, A, which allows

E = 15u < ulul > /A 2. It is related to the curvature at the origin of the two-point velocity

correlation. From the zero crossing problem of stochastic processes it can be viewed as proportional

to the number of maxima per unit time of the stochastic process. From its definition from integrals

in wave space it is seen to be the energy weighted length scale of the turbulence being the second

moment (with respect to _) of the energy spectrum. The reader is directed to Tennekes and Lumley

(1972) for further amplification of these ideas.

Spatial spectral bandwidth: shear flows

A ratio of length scales for turbulence in the presence of a mean shear is also possible. Using the



mixinglength scaringthe lengthscaleat whichthemeanvelocitygradientsinputs energyinto the
spectralcascadeis approximatedby

_2
~ S. (15)

Thedissipationscalesarerequiredto bemuchsmallerthan thescalesat whichenergyis input into
the turbulence77/_<< 1:

77~ sk R?3/, << 1 (16)
e ¢

using _ ,_ _ and _ = (v3/¢) 1/4.

Temporal spectral bandwidth: shear flows

If the strain rates of the small scales of the flow are much larger (corresponding to very high

frequency fluctuations) than the largest scales of the turbulence it can be argued that models based

on the idea of a statistical small scale equilibrium will be useful. One requires that

3

>> 1.

This is similar to the detuning idea in the theory of linear oscillations. Using the enstrophy as a

measure of the small scale strain rates, < w2 >,,_ e/v produces a stronger requirement than that

for a spatial spectral gap

•5 e 1/2 3 1/2 Sk 1

~ y@ - (-79- >> 1 (is)

3R1/2thus, 7.,_ > > -- for the adequacy of a statistical independence of the dissipative scales of the

turbulence. The scalings _ ~ _3/£ and S ,-_ _2/i have been used.

The existence of a temporal and spatial spectral gap are an indication that the small dissipative

scales of the flow adjust to the large scales of the motion in a way that is subsumable by a con-

stitutive relationship. If this were not the case the small scales of the motion will have their own

dynamics that will not be in equilibrium with the energy cascading from the larger scales of the mo-

tion. In this case the usual phenomenological dissipation equation will not be useful. In qualifying

the relevance of DNS one should ascertain the magnitude of the above inequalities.

Small scale isotropy: shear flows

Similar arguments can be made wavenumber dependent using the Kolmogorov spectrum: E(a) ~

E2/3t¢-s/3. Using the Kolmogorov spectrum and 8(_:) ,,_ (E(tc)g3) 1/2 it is found that scales of the

flow unaffected by the mean strain can be expected to have wavenumber t¢ satisfying

2 Sk 3"2

e¢_ .__D3/4 2Sk_3/2 For the dissipative scales _17 1 and thusUsing _ = -_R'[ 3/4 one finds ,v_[,_t >> (5 • , • =

2Sk 2
R, >> (20)



2 sk Hunt and Carruthers (1990) have discussed theor in terms of the Taylor microscale R_ > > 5--_-"

broadening of the turbulence spectrum in simple shear flows which will moderate these inequalities.

4. Characterization of the mean deformation

Deviations from the ideal Kolmogorov behavior are expected in the presence of mean deformations

of the turbulence field. The deviations will be different depending on the type of mean deformation

and thus the classification of the mean deformation is part of understanding the turbulence field:

the energy containing eddies are strained primarily by the mean deformation and it is their history

and orientation that is of primary importance to the development of the Reynolds stresses. The

classification of the mean deformation is structural: the amount of strain versus rotation; and

temporal - how long and how rapid is the strain.

There are, of course, regions of the flow in which the mean deformation plays a more minor role; in

an aerodynamic context these occur at the periphery of turbulent regions and in separated regions

where turbulent transport is most important. Turbulence models based on perturbations about a

production-dissipation balance perform poorly in these regions.

Invariants of the mean deformation

The production is the contraction of the Reynolds stresses on the mean velocity gradient. The

production can be written in terms of the mean strain as

Pk = - < uiuj > U_,j = - < u_uj > S_j (21)

using the anti-symmetry of Wij: rotation does not directly contribute to the production. Kinemat-

ically rotation continually rotates the vortex lines away from the direction of the principal strain

axis - the most efficient direction for energy transfer between the mean and turbulence. This does

not occur in an irrotational strain in which the alignment is maintained and the energy transfer to

the turbulent motion is more efficient. A parameter that indicates the relative importance of the

straining, S_j, versus rotation, Wij, components of the mean deformation is useful. This is typically

done for the dissipation tensor, Eij = _, < ui,k uj,k > Tennekes and Lumley (1972). The trace of the

mean flow equivalent is Uj,k Uj,k = S_j + W2j. Following Hunt's (1992) very insightful suggestion
one normalizes so that

Def = SijSij - WijWij (22)
&j ¥

Any mean deformation falls in the range -1 < Def < 1: Def = -1 corresponds to a pure (solid

body) rotation, Def = 0 a pure shear, and Def = 1 a pure strain. More physically: Def > 0

indicates the mean deformation is splatting the eddies while Def < 0 indicates the eddies are being

swirled.

Flows with a strong strain component, Def _ 1, appear to have a significant memory and local

models for the Reynolds stresses (such as eddy viscosity formulations) lead to serious errors in even

the mean flow predictions. A classic example of a failure of a local model for the Reynolds stresses

for a strain dominated flow, is the k - s calculations for the pipe with a double bend connected by



a diffuserasshownby Launder(1989).In theseflows an eddy viscosity closure with its inadequate

representation of the anisotropy of the normal stresses over-predicts the production terms. Second-

order closures, in as much as they include substantial nonlocal effects, (the effects of advection on

the Reynolds stresses are included) as well as exact production terms appear to be satisfactory

except when the strain is very large, Sk/e >> 1.

For flows that are primarily shear flows, Def --. O, local eddy viscosity type models perform

substantially better. The continual rotation of the vorticity away from the direction of the principle

strain is an additional decorrelating effect. The eddy viscosity formulations work reasonably well for

simple flows, though they are still not able to predict the normal stresses. For this at least nonlinear

models are required; Taulbee (1992) or Gatski and Speziale (1993) are nicely updated versions of

Pope's (1975) rational formulation for equilibrium flows. A recent addition to this company is the

exact solution of the nonlinear algebraic equations by Girimaji (1995). The tendency to a universal

equilibrium state (nominally independent of initial conditions) appears to be a good approximation

in simple shear flows an eddy turnover or so past inception. The fact that _ _ const, in widek

variety of shear flows is an important fact; this has been recognized and exploited with success by

Speziale et al. (1990a). This does not appear to be the case, as already mentioned for flows with a

strong strain component, Def > 0, or for rapidly distorted flows that occur in high lift situations in

which nonlinear effects are less important than linear distortion effects and the flows dependence on

its history precludes a local model. Hunt and Carruthers (1992) suggest that this is the case because

of the appearance of statistical eigenfunctions in pure shear flows and associate this fact with the

success of universal or equilibrium type theories as embodied in local eddy viscosity closures.

For primarily rotational flows, Def --. -1, fewer things are known. Rotation, in isotropic ho-

mogeneous flows, does not contribute to the generation of the turbulence energy though it does

substantially modify the anisotropy of two-point statistics; in bounded systems rotation affects the

anisotropy of the Reynolds stresses and the production is directly affected. Rapid system rotation

appears to align the vorticity of the large scales actively suppressing the stretching and tilting of

vorticity necessary for the cascade, Ristorcelli (1995). The energy exchange between the normal

stress aligned with the rotation and those in the plane perpendicular to the rotation is reduced. In

these cases, in theory at least, more general rapid strain models (see Ristorcelli et al. (1995), Kassi-

nos and Reynolds (1995)) constitute two such valiant attempts for equilibrium and non-equilibrium
flOWS.

A "natural" time scale of the turbulence: k/e

While not directly related to the mean deformation it is necessary for subsequent developments in

this section to introduce a time scale of the turbulence. The strain rate, a time scale characteristic

of the mean flow, no sense unless compared to a time scale characteristic of nonlinear mechanisms.

The ratio of the turbulent kinetic energy to the dissipation rate, k/e, is often interpreted as the

eddy turnover time. It characterizes the natural time scale of the turbulence and may be thought

of as the amount of time it takes for a nonlinear process to decorrelate the fluctuating field. It

is, when properly scaled with a characteristic velocity difference and length scale, an order one

quantity in strongly turbulent regions where the spectral cascade moves energy to the small scales

rapidly. Near the boundaries of laminar/turbulent regions k/e becomes large indicating a weaker

10



lessdissipativeturbulence.

Total strain parameter

For small amounts of strain or over short periods of time turbulence behaves as an elastic medium

with perfect memory of its initial conditions. Its behavior is then a function of the total strain.

The accumulated deformation felt by a fluid particle, called the total strain, is often used to unify

measurements across a number of different flows, Townsend (1976), Sreenivasan (1985). This

quantity appears quite naturally in the linear rapid distortion theory for a homogeneous flows;

the mathematics is only tractable in the Fourier domain on a grid stretching and rotating with the

mean deformation, Pearson (1959). If the total strain is large nonlinear effects have had substantial

time to act and the turbulence is thought to approach some sort of universal structure, independent

of initial conditions. In such a case the turbulence is thought to act like a viscous medium and

stresses are proportional to strain rate and not total strain.

The point is that the total strain can be used to indicate what sort of mathematical procedure

is most adequate for a specific flow. If xs is the distance along a mean streamline and Us is the

velocity along that streamline then the total strain can be understood as (_T = _ U1,2 for constant

U1,2. More generally the total strain can be defined

/aij = Ui,j dr'. (23)

The exponential of this function is also used. The total strain is used to assess the equilibrium

nature of a flow. In general if a > 4, Sreenivasan (1985), the turbulence has had enough time to

adjust to the imposed deformation. If this is the case then usual single-point structural equilibrium
models can be used to model the flows evolution. For shear and strain flows Sreenivasan (1985)

and Townsend (1976) use the definitions

f /c_r = U1 ,_ dr', c_rz = U_,_ dr' (24)

following a mean fluid particle and/3 refers to the principle rate of strain. These quantities can be

related to the nondimensional time used in the linear rapid distortion theories; _ = _Tt. Townsend

(1976) reports good agreement between RDT and experiments for small _. For large _ the inherent

nonlinearity of turbulence causes departures from the rapid distortion theory results, Townsend

(1976). The reader is referred to Hunt (1992, 1978, 1973) and in particular to the exceptional Hunt

and Carruthers (1990) for more recent interpretations.

Relative strain parameter: Sk/E

The strain rate normalized by the time scale of the turbulence, Sk/E, is sometimes called the

relative strain parameter. It has many interpretations; as has already been seen, from one point

of view, it can be related to the ratio of mean deformation to the self straining by the turbulent

eddies. Its utility can be seen in the nondimensionalization of the second-order moment equations

when re-expressed in terms of the anisotropy tensor (to be defined shortly). The detMls and their

implications in the context of a specific class of turbulence closures are outlined clearly in Speziale

et al. (1990).
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Onecanusethe total strain a T to understand Sk/e. In which case it can be taken as an indication

of the total strain an eddy experiences over the time that it is correlated. The total strain and the

relative strain are indicators of how long and how hard the turbulence has been strained by the

mean deformation.

Rapidly changing turbulence

Hunt (1992) has very dearly divided turbulent flows into two simple categories which he names,

very appropriately, rapidly changing turbulence (RCT), Tllk/c >> 1, and slowly changing tur-

bulence (SCT), Tllk/e < 1. In a rapidly changing turbulence there is a strong applied mean

deformation and the relative movement of two fluid particles is primarily due to the mean distor-

tion and not the turbulence. The rapid distortion theory for turbulence is a linear procedure; its

solution structure is a substantial improvement over hydrodynamic (linear) stability theory which

uses the same equations. Hunt (1973), Townsend (1976), and Hunt and Carruthers (1990) provide

suitable resumes of the theory.

The fact that an imposed time scale is much smaller than the turbulence time scale Tilk/c >>

1 means that the turbulence is highly correlated with its initial state and short term memory

assumptions invoked in constitutive arguments are not valid. As noted below a large production

rate will create turbulence rapidly more effectively decorrelating the turbulence. This suggests that

if TIS = (Tic/k)(Sk/_) >> 1 then the turbulence is rapidly decorrelated from its initial state and

constitutive arguments made for the unclosed terms may still be relevant.

The usual understanding of KDT is as a small time expansion, t << k/e, for the response of

turbulence to a rapid change in deformation. As S and k/c are not independent parameters the

inherent nonlinearity of the turbulence will adjust Sk/c to a more modest value for which the usual

single-point closures will be successful. There are however a number of important flows in which

the turbulence never has time for the nonlinear adjustment to take place. These flows that current

form of single-point closures are unable to legitimately predict.

To summarize the three mean flow parameters, total strain aij, relative strain, Sk/c and relative
O

rate of change of strain S -1 S k/c loosely speaking how long, how hard and how fast the strain

deforms the turbulence are important quantities for the characterization of a turbulent flow.

Imposed time scales and memory

Many of the arguments that lead to constitutive relationships for unclosed terms in the moment

equations involve arguments about the relative time and length scales of imposed strains, geome-

tries, boundary conditions and initial conditions. For a turbulence with short term memory and

limited awareness Lumley (1967, 1970)has discussed the details under which constitutive relation-

ships are tenable. At issue here is the application of equilibrium type turbulence closures in which

linear relaxation arguments (with time scale k/e) are used to model various unknown terms in

situations where things are happening on a time scale fast with respect to k/_. To see these issues

more clearly it is useful to define an imposed time scale, TI, and compare it to the time scale of

the turbulence, k/c. A slow distortion will correspond to T_-lk/c < 1.

The imposed time scales may be associated with time varying mean deformations as might occur
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in unsteadymotionsor in the vortex sheddingfrom a bluff body. In the caseof vortex shedding
from a bluff body the imposedtime scalecanbe relatedto a Strouhalnumber: T[ 1 = St Uo/D

and the current forms of the Reynolds stress models can be considered relevant tools if,

Sk g U_
St < 1. (25)

With St __ 0.2 and _/Uo_ _ 0.3 as it is in separated flows, this is an order one quantity and the

current form of relaxational turbulence models should yield useful results. Which is to say that

unsteady fluctuations occurring, in separation and shedding, can be treated within the context of

a quasi-static approximation.

Alternatively one can think of the imposed time scale as the time it takes for a fluid particle

to traverse a region of rapidly changing mean deformation of length L at average speed U0 then

TI = L/Uo. A simple situation, easily abstractable to other flows, might be the case of flow in a

pipe with sudden changes in shape over a length L. Such a configuration might occur in the isolator

portion of a ram jet or in the curved flow around a high lift element. If the percentage change in

the mean distortion is large, _- > 1, over times short with respect to the the decorrelation time

v0k
--- >> 1 (26)
Le

the flow may be characterized as a rapidly changing turbulence, Hunt (1992). An imposed time

scale might be more unambiguously related to the percentage rate of change of the deformation
o

following a fluid element T/1 = S S -1. In such flows the nonlinear processes are not effective in

erasing the turbulence memory and modeling assumptions made to close unknown terms invoking

]oca3ness assumptions in time and space are questionable. The k - E and second-order closures,

as presently constructed, involve assumptions that are not consistent with such rapid changes.

The only potentially saving grace in these flows, as Hunt (1992) so acutely observes, is that the

turbulence has very little time to influence the flow so that a poor turbulence model (presumably)

wi]J have little effect on the flow.

Extra strain parameters: curvature

The turbulence in most flows of engineering interest are subject to more complex strains than the

simple thin shear which forms the basis of most metaphors for turbulent flows. In genera3 there

are additional strains which, though small with respect to the main production mechanism (shear)

have very sizable effect on the flow. Bradshaw (1988, 1975, 1981)) give surveys of these issues and

a comprehensive list of references. These extra strains, in a 2D aerodynamic context, occur in flows
with streamwise curvature or flows with streamwise accelerations. A useful parameter that is a

measure of the extra strain is the ratio of the curvature to mean shear. HoUoway and Tavoularis

(1992) in their study of the effects of curvature in a homogeneous shear use

stb = --U/ R (27)
dU/dn

where R is local radius of curvature and dU/dn is the local cross-stream derivative of the mean ve-

locity. This parameter is obtained from the expression for the production in streamline coordinates.
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The symbolstb is used in a generic sense to indicate that the quantity is a stability parameter:

stb = 0 corresponds to the usual simple shear flow; stb = 1 to rigid body rotation and stb = -1 to

an irrotational curvature. In general, when stb > 0 the turbulence production by the mean shear

is suppressed with a tendency to relaminarization taking place for stb > 0.5. When stb < 0 the

flow is destabilized and curvature enhances the turbulence production over and above that due to

the mean shear. Reflection on the definition of stb indicates it can be interpreted as a measure of

departure from a simple shear.

Extra strain parameters: pressure gradient

In flows with pressure gradients additional production terms in the Reynolds stress equations, due

to streamwise velocity gradients, contribute to the increase or decrease of the turbulence. The

parameter of interest, easily obtainable from the production in the Reynolds stress equations,

Pk = - < u_uj > U_,j = - [< ulu2 > U1,2 + < ulul > U_,_ + < u2u2 > U2,2 ] (28)

is the ratio of the production by the streamwise velocity gradient, < ulul > U1,1, to that due to the

crossstream gradient < ul u2 > U1,2. Restating this in streamline coordinates and using continuity

produces

< uu > - < vv > U,s bll - b22 U,_
stb - - (29)

< uv > U,_ b12 U,n

Note that the anisotropy of the turbulence determines whether the mean deformation is stabilizing

or destabilizing. Flows in which combinations of these effects, as might occur in aerodynamic

situations, are studied in Nakayama (1987). Nakayama also investigates the adequacy of eddy

viscosity assumptions in his flow; he shows, as one might expect, that they are inconsistent with

experimental data.

There are many extra strain parameters: in general they are found from a ratio of specific com-

ponents of the production tensor in the second-order equations. The examples chosen here reflect

situations which might be seen in multi-element airfoils including the high lift genre. In three

dimensional situations, ie. skewed boundary layers, there are additional extra strains of impor-

tance. Bradshaw (1975) has discussed the effects of the extra strain rates in simple shear flows

as well as their impact on the thin shear layer assumptions often invoked. Bradshaw (1981) has

devised a very useful classification scheme using the ratio of the extra strain, e, to the primary

shear, dU/dy, as a nondimensional parameter: 1) simple shear layers: stb < 0.001, 2) thin shear

layers: 0.001 < stb < 0.01, 3) fairly thin shear layers: 0.01 < stb < 0.1, 4) strongly distorted flows:

stb > 0.1. For example for the curved flow stb = e/dU/dy. Extra strains begin to have some very

important effects, Bradshaw (1981), once stb > 0.001 .

5. Parameters from the second-moment equations

A few of the parameters that are found in the Reynolds stress equations are useful in understanding

the nature of a turbulent flow. In this section the production to dissipation ratio is highlighted; it

is useful as a measure of the equilibrium nature of the flow as well as a measure of the suitability of

various localness assumptions. Also defined and described are three measures of anisotropy: that

of the large scales (Reynolds stresses), the small scales (the dissipation), and the two-point length

scale anisotropy.
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Classification of the Reynolds stresses: anisotropy

The Reynolds stress tensor, a collection of six independent quantities is often replaced with the

anisotropy tensor, bij, and the kinetic energy, k = 1(< uu > ÷ < vv > + < ww >), where

bij - < uiuj > 12k (30)

This very insightful decomposition distinguishes variations in Reynolds stresses due to changes in

energy, k, and those due to changes in structure, bij. The Reynolds stress anisotropy tensor is

essentially a normalized Reynolds stress and represents deviations from an isotropic state, bij, of

the large scales of the turbulence. Many model developments are done using expansions about an

isotropic state, which is to say in powers of the anisotropy tensor. Thus the level of anisotropy

is important in assessing the adequacy of using such models in a particular flow. There are other

measures of anisotropy used in some experimental work but they do not possess the proper tensor

characteristics. The only rational way to specify the anisotropy of the Reynolds stresses is by

using a quantity that transforms as a tensor. Note the diagonal terms have the following very
1

useful bounds: -5 < ba_ < -_ (no sum on Greek indices); ba_ = -1/3 indicates no energy in

one component of the energy of the turbulence; b_ = 2/3 indicates all the kinetic energy of the

turbulence resides in one component of the energy.

In the usual simple shear flows the only turbulent stress of importance is the < uv > shear stress

which is reflected in ha2. Allusion has been made to the utility of the approximation <-_-------_>,-- const.;

this reflects the preservation of structure in simple shear flows and is used in the development of
D

Algebraic Stress Models where -_bij = 0 is assumed.

The anisotropy tensor is a very useful indicator of the flow state of the large scales of the turbulence.

Consider the following characterization using the two scalar invariants associated with the tensor.

The two invariants of the anisotropy tensor are defined as

II=-lbijbij, Ill= _bipb,jbji (31)

For a two-dimensional flow the definitions are easily expanded to yield II = - ½((b11) 2 + (b22) 2 +

(b33) 2 ÷ 2(b12) 2) and III = ½((bll) 3 + (b22) 3 + (b33) 3 + 3b11(b12) 2 ÷ 3b22(b12)2)- Note the following
1 1 2

bounds: 0<-II< 3, 10s <III< _.

Any experimental measurement (or numerical result) that does not fall within these bounds is

wrong (which may or may not be important). Using these invariants, II, III, a simple 2D picture

indicating the state of the turbulence to be drawn. The figure, see Figure 2, has come to be called

the Lumley triangle, Kassinos and Reynolds (1995), after Lumley (1978) in which it first appeared.

A few points about the triangle are worth mentioning. The origin at (0,0) corresponds to an

isotropic turbulence. The uppermost straight line corresponds to, what is sometimes called a two

dimensional turbulence, in the sense that one of the eigenvalues of the Reynolds stress tensor is

zero. The graph of this line is given by 0 = 1 + 9II + 27III. For that reason the quantity

F = 1 + 9II + 27III, where 0 _< F _< 1 is used to characterize the departure from a two dimensional
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Figure 2: Anisotropy invariant map, Lumley (1978): -II vs. III

state (by which the disappearance of one of the normal stresses in principal axes is meant). For an

isotropic turbulence F = 1 while for a two component Reynolds stress turbulence F = 0.

The upper right vertex of the triangle is sometimes called the one dimensional state and corresponds

to a turbulence constituted of parallel vortex sheets. The upper left vertex of the triangle corre-

sponds to a turbulence with two equal eigenvalues; a configuration that will lead to this portion of

triangle is a flow state comprised of series of parallel line vortices. The two curved boundaries corre-

spond to axisymmetric states of the turbulence. The right boundary corresponds to a state in which

one normal stress is larger than the other two (which are equal). It has equation III= 2(-II/3)3/2

and is sometimes called a cigar turbulence. The left boundary corresponds to a state in which one

normal stress is smaller than the other two (which are equal). It has equation III= -2(-II/3)3/2

and is sometimes called a pancake turbulence. The vertical line III= 0 corresponds to a flow state

in which one eigenvalue is the average of the other two. III is a measure of the asymmetry of the

distribution of the eigenvalues about the middle eigenvalue. These are all statements about the

relative size of the normal components of the Reynolds stresses (in principal axes) not about the
shape of eddies though such information can be inferred.

For an equilibrium homogeneous shear IIo_ _- -0.0587, III_ __ 0.0032, F_ _ 0.5736. A similar

value is found for the log layer region; both of these are given by the two adjacent points in

the central regions of the triangle. The third point reflects the value the invariants attain in the

15 < y+ < 30 region. In boundary layer flows, F varies from 1 in the outermost isotropic portions

of the flow and F _ 0 in the inner layers, y+ < 10 of the boundary layer. Some interesting figures

along these lines are given by Antonia et al. (1994a). F can also be expressed in terms of the
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Reynoldsstresses:F = (R3j - 3RjjR_j + 2R3j)/6 where R,j =< uiuj > / < UpUp >.

Equilibrium 2DMFI SL FLT SSG Experimental

Values Model Model Model Model Data

b_ 0.209 0.202 0.208 0.219 0.203

b_2 -0.155 -0.080 -0.146 -0.164 -0.156

b_ -0.148 -0.195 -0.144 -0.146 -0.143

b_3 -0.061 0.007 -0.064 -0.073 -0.06

(Pk/E)o¢ 1.88 3.42 1.99 1.88 1.73

(S K/z)_o 6.08 21.35 6.84 5.76 5.54

As a benchmark in comparing turbulent flows to the equilibrium homogeneous shear flow (or ini-

tializing computations) a table taken from Ristorcelli et al. (1995) in which several different models

are compared to the homogeneous shear flow (DNS and laboratory) is given. The equilibrium log

layer has very similar values for the anisotropy while Pk/E = 1.0 and Sk/E _- 3.1.

A few examples of how the anisotropy plays a role in complex turbulent flows are worth considering.

In flows with strong streamwise accelerations (pressure gradient driven flows), the anisotropy of

the normal stresses creates an important additional production term for the kinetic energy of the

turbulence. The anisotropy of the normal turbulence stresses provides additional mechanisms for

the production of turbulence

D
--]g __
Dt

- < ujup > Uj,p + .... -_ (32)

-[<ulu2 > U1,2 ÷ < ulul > U1,1 ÷ < u2u2 > U2,2 ] + .... -E (33)

which can be rewritten in terms of the anisotropy tensor

k_ 1 D
k-- - b12U1,2 - [bll - b22] UI,1 -_- .... - E (34)

presuming a two-dimensional mean and using continuity U1,1 = -0"2,2. The anisotropy of the

normal stresses, b22 - b33 will also give rise to secondary circulations (mean streamwise vorticity) in

sheared flows in complex geometries as can be seen by inspection of the streamwise mean vorticity

equation

D

D-__' = _jUI,j + [k (b_ - b33)],_3-[(kb:3),_- (kb23),3_].... (35)

Similar effects are seen in wall jets; see Launder and Rodi (1983) for a very similar physical discus-

sion. Additional effects of anisotropy in complex mean flows can be found in Bradshaw (1987) and

almost all the Bradshaw references given in the bibliography. The inadequacy of the linear eddy

viscosity models in predicting the inequality of the normal stresses required to produce observed

secondary circulations is well known and has been nicely treated by Speziale (1987).

Also in the streamwise vorticity, _/1, equation is the aaisotropy of the spatial gradients of the

spanwise turbulent shear stress, b23 k =< u2u 3 _. In three-dimensional boundary layers, eg. flows
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with spanwisepressuregradients,this becomesa moreimportant sourceof secondary circulations.

In flows with strong streamwise variations the anisotropy of the normal stresses is an additional

source of the primary, f_3, (spanwise) vorticity.

Production to dissipation

The ratio of production to dissipation, Pk/E, is used to characterize the localness of the turbulent

flow. The production is related to

Pk = - < uiup > Ui,p = -2 < uiup > Sip = -2 kbijSip (36)

is the rate of growth of the kinetic energy, k = ½ < ujuj >, due to the Reynolds stresses working

on the mean strain. In the equilibrium log layer Pk/E = 1 while in an equilibrium homogeneous

shear Pk/e -_ 2. In a wake flow Pk/e < 1.

In the equilibrium log layer of a flat plate in which Pk/E = 1 one can, with only nominal handwaving,

show that the Reynolds stress is described by an eddy viscosity. It is this nominal and singular

success and its similarity to thin simple free shear layers that has spawned an engineering tool whose

foundation is no more universal than a flat plate. Part of the reason for this success is that the

locally generated turbulence dominates the local structure. It is this fact along with the inherent

decorrelating effects of turbulence that suggests the possibility of a universal behavior determined

by local quantities. It is, in part, for this reason that the local algebraic eddy viscosity closures

have performed so well in the simple flows whose primary mean flow is, like the flat plate, a simple
shear.

Flows with nominal production like the wake are noticed to have a stronger dependence on the

initial conditions and these effects are not accounted for in local eddy viscosity type closures. This

reflects the well known fact that turbulence does not exhibit universal behavior at low Reynolds
number.

The anisotropy of the dissipation

The anisotropy of the dissipation is an important quantity - it sets the levels of dissipation of

the individual Reynolds stresses and thus modifies the anisotropy of the Reynolds stresses. The

anisotropy of the dissipation tensor represents deviations from an isotropic state of the small scales

of the turbulence. They are a measure of the departure from an ideal Kolmogorov turbulence.

Reynolds stress anisotropies, mean deformations, and low Reynolds number effects, are all associ-

ated with small scale anisotropies. Similar to the anisotropy tensor for the Reynolds stresses one

can define an anisotropy tensor for the dissipation:

_ _ij 1

dij - _'e - "_¢5ij (37)

where eij= 2 u < ui,kuj,k >= 2e(½_ O"+ dij). Similar ideas describing bij apply here. For the

dissipation to be isotropic dij = 0. The dissipation is not isotropic and this fact has been recog-

nized for many years, Townsend (1954). The anisotropy of the dissipation is sometimes measured,

Tavoularis and Karnik (1989), Antonia et al. (1994b). In a simple shear, Tavoularis and Karnik

(1989) have indicated that dll -_ 0.15, d22 _-= -0.05, d33 _- -0.09 and d12 = -0.14. In general
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theyfind that the dissipationof the small scales can be approximated by dij = 0.85bij - not reason

enough for assuming the dissipation isotropic as is assumed in some turbulence closures.

A definition of anisotropy using the vorticity is also sometimes used, Lee et al. (1990). If one

is interested in comparing the anisotropy of the small and large scales such a definition of the

anisotropy (based on a vector) is misleading. Consider for a moment the fact that a one dimensional

vorticity field is associated with a two dimensional velocity field, Lumley (1984).

Correlation coefficients

Note that the bounds on the various quantities, bij, II, III, F, formed from the Reynolds stresses

can be used to verify experimental measurements. The bounds can also be used to design turbulence

models that do not predict flows outside these bounds. This is a feature sometimes incorporated in

turbulence models and can be very useful from the viewpoint of computational stability in complex

flows. The bounds on the invariants of the anisotropy tensor are very closely related to statistical

inequalities that come from the Cauchy-Schwartz inequality. From the simplest point of view, these

quantities are the correlation coefficients and are required to be bounded, in magnitude, by unity:

for example

-1 <_ P_Z = < u_u_ >1/2< u_u_ >1/2 -< 1. (38)

Like b12 the quantity P12 in simple shear flows usually varies much less than the Reynolds stresses

and the energy indicating a relatively slow evolution of structure. Thus the correlation as well

as the anisotropy tensor are measures of turbulence structure and reflect, to a certain degree,

the coherence and stability of turbulent eddies. A sterling example of this phenomena is the

decaying turbulence: the correlation coefficient decays algebraically while the energy decays nearly

exponentially, Narashima and Sreenivasan (1979).

As an indication of the structural changes a small change in the mean deformation can have,

consider the boundary layer with nominal streamwise curvature: p12, usually about 0.6 throughout

a boundary layer, now has a zero and changes sign throughout the outer portions of the layer. Such

a change in sign without a simultaneous change in sign of the mean velocity gradient indicates that

the Reynolds stresses begin to decrease rather than increase the energy of the turbulence.

The turbulence intensity

It is customary to measure and report turbulence intensities as a reflection of the importance of

turbulent processes. The turbulence intensity is defined as the square root of the different Reynolds

stresses normalized by the local mean velocity;

< uu >]/2 < uv >1/2

U ' U
(39)

In many flows the turbulence intensity is quite small, a few per cent. For many of these flows simple

turbulence closures do well in simple flows. However there are many flows in which intensities are

quite large. In separated flows turbulence intensities can be quite large, even 30% and simple

models are no longer adequate (which does not mean they can't be tuned to get the right answers).

In such flows there is also the possibility of important transfer of energy from the turbulence to the
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meanflow, a mechanismnot accountedfor in eddyviscosityclosures.Stagnationregionsarealso
placesin whichenergytransferdueto turbulent transport is moreimportant thanadvectionand
simpleideasbuilt into turbulencemodelsassumingthe predominanceof a rapid meanflowareno
longeradequate.

Measures of two-point (length scale) anisotropy

In the single-point closure methods the flow, at any one point in the flow, is assumed to be charac-

terized by one length scale. There are in fact several length scales in a given turbulent flow as can

readily be defined from the two-point correlations of the velocity:

LaZ,k < uc, u z >= f < ua(x)u_(x + Axk) > dzk. (40)

One then assumes that all the other length scales scale with this length and constructs models that

are parameterizable by this one scale. Depending on the flow situation this may or may not be a

suitable assumption. The most commonly used length scales are the longitudinal integral scale

< UlUl >= / < Ul(X)Ul(X + Ax) > dz. (41)Ln,1

and transverse length scale

ulul >= / < ul(x)ul(x + Ay) > dy. (42)Lll,2 <

Typically 511,1 -- 2Lll,2. Measures of the two-point anisotropy are useful in assessing the adequacy

of the modeling assumptions involving a single "isotropic" length scale (which is taken to be the

Kolmogorov length scale). A good measure for the two-point anisotropy would be a comparison

of quantities such as Lll,2 and L22,1. The knowledge of the integral length scales in two different

directions, Lll,2 and L22,1 draws attention to the adequacy of the single length scale assumptions

used in single-point closures and delineate the flows in which such effects are important. Free

stream turbulence effects are often characterized using the integral length scales and the comparison

of the different length scales will give a very useful specification of the anisotropy of the free

stream turbulence. The recognition of the anisotropy of the correlation lengths in rapid distortion

problems is something that is indirectly recognized in the structure function methodology proposed

by Reynolds; Kassinos and Reynolds (1995) is a summary of the current view of this method.

A "natural" length scale of the turbulence:

It is possible to define several different length scales. There is the mixing length defined using the

eddy viscosity approximation

thus

(3 1/2_.rn r< UV >= -utU1,2_- - k) _1,2

_,m =< "a?.) > /((2k)l/2u1,2 ).

There is, as discussed, the two-point correlation length scale,

Lij,k < uiuj >= / < ui(x)uj(x + Axk) > dx.

(43)

(44)

(45)
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Leeet al. (1990) have quite nicely shown, for the rapid homogeneous shear, that the most appro-

priate scaling parameter is the length scale that comes from the Kolmogorov scaling _ = afi3/e.

This scaling is appropriate for a high Reynolds number, ideal Kolmogorov turbulence but is a very

robust scaling. It is sometimes identified with an integral length scale such as the longitudinal cor-

relation length, _ = Ll1,1. See Sreenivasans (1995) summary for a number of simple incompressible

shear flows. The constant of proportionality does not however appear to be a universal constant.

Sreenivasan (1995) has assessed the accuracy of this expression in several canonical simple shear

flows. For homogeneous shear flows the data indicates a ,-_ 1 - 2. For the log layer or wake flows

a _ 4. For flows with smaller microscale Reynolds numbers Sreenivasan (1984, 1994) shows that

,,_ R_ 1.

6. Homogeneity, transport and higher order moments

Many turbulence model developments, because of the possibility of exact mathematical results, use

a quasi-homogeneous assumption. For developments involving the assumption of quasi-homogeneity

one presumes the turbulence to be fine-grained and one can identify a fine-graining parameter, say

et = _/L a ratio of correlation scale to a geometrical length characteristic of the inhomogeneity.

Developments are then thought of as a series expansion in _ the leading order term being the

homogeneous result. This is essentially an invocation of kinetic theory ideas about the ratio of

length scales of the turbulence to the mean flow. In this way model development captures the

leading order terms for quantities requiring closure. What can one expect of a turbulence model that

does not capture the proper behavior in the simplest of flows ? One should insist that a turbulence

model be consistent with results from homogeneous turbulence. This is an important issue that has

been exploited profitably by Speziale et al. (1990), and in the context of Algebraic Stress Models by

Taulbee (1992), Gatski and Speziale (1993), and most recently in a new development by Girimaji

(1995).

A variety of statistics related to diverse issues concerning homogeneity are given. In general one

is interested in the homogeneity of the mean as well as that of the turbulence. One assesses the

homogeneity on the scale of the turbulence length scale, _. In inhomogeneous flows issues regarding

how the turbulence transports itself, not accounted for in most simple closures for the Reynolds

stresses are also important. Two additional statistics the skewness and the kurtosis indicate much

about processes, such as entrainment, occurring at the edges of turbulent regions.

Homogeneity of the mean deformation
As has been seen the mean deformation field plays an important role in determining the turbulence.

The Kolmogorov ideal is homogeneous and most turbulence model developments are made assuming

homogeneity. A natural measure of inhomogeneity will be the inhomogeneity of the mean defor-

mation. One measure of the inhomogeneity of the mean deformation is the length scale invented

by Prandtl in his application to mixing length models near inflectional points: Lvu = U1,2/U1,22
_ vs In which case a measure ofwhich is readily generalizable to multi-dimensional flows as Ls 1 - -_-.

the inhomogeneity of the mean deformation is

gV_S < 1. (46)
Ls

The assumption that VU is uniform over an integral scale of the turbulence is called the quasi-
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homogeneousassumptionandis invoked in constitutive arguments using results from homogeneous

turbulence to close unknown terms. It is related to the limited awareness assumption mentioned

earlier. This measure of inhomogeneity has problems in regions of the flows were S = 0 as occurs

at points of symmetry; one can then use V_TS/VS.

Homogeneity of the turbulence field

In the single-point closures mixing length hypotheses are often used to account for the effects of

turbulent transport. The mixing length hypotheses will do very well if the inhomogeneity and the

anisotropy of the field is small or the turbulent transport is not important as might be in regions

of the ftow dominated by mean advection and production. Similarly,

e (47)
Lk

There are several situations in which the quasi-homogeneous mixing length type assumptions are

inadequate, ie. when _./Lk > 1. These are now considered. These situations arise when there is a

mixing of turbulence with different origins. For example, when large scale free stream turbulence

produced by a turbine blade or an aircraft component interacts with a downstream turbulent shear

layer. Pressure fluctuations in the downstream will produce turbulence stresses of opposite sign to

those predicted by an eddy viscosity model. This is one of many mechanisms of countergradient

diffusion, ie. diffusion up the gradient which is in effect a negative viscosity in the context of a

mixing length approximation. Similarly in merging or asymmetric shear layers in which the mean

shear varies substantially over a distance _, ie. l/Lvv > 1, similar countergradient transport can

be seen. The Reynolds stress will not be proportional to the shear nor have the sign as might be

predicted by an eddy viscosity model. For additional examples the reader is referred to Launder

(1989) or Hunt (1992).

Turbulent transport

Turbulent transport of the mean flow momentum is done by the Reynolds stresses. In the way mean

velocity gradients are a production mechanism for the Reynolds stresses, Reynolds stress gradients

are production mechanisms for the turbulent transport of Reynolds stresses. Thus an assessment

of the inhomogeneity of k according to the previous section is also an assessment of the importance

of turbulent transport.

In k - E or second-order closures one is interested in the turbulent transport of the kinetic energy

and of the Reynolds stresses. These are the third-order moments of the velocity field, < u_ujuk >,

and appear in the k and < uiuj > equations in engineering flows as in Section 2.

For flows in which the mean advection is dominant, < uiujuk > are typically not so important and

simple mixing length models seem to be adequate. For flows in which the mean advection is small,

say at the edges of wakes, shear layers and jets, behind bluff bodies or in the stagnation regions

associated with separation turbulent transport is expected to be important. In these flows it is

not unusual to see turbulence intensities on the order of 0.3. Loosely speaking whenever 79/E < 1

transport or mean advection will be important and locally generated turbulence will not dominate

the local structure. The importance of turbulent transport, gradients of the third-order moments

can be estimated from experiment by comparison of its derivatives to the mean flow advection:
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UiUjU p _,p v$.Up _ ui_zj _,p.

importance. In the case of the energy equation

< upk >,p vs. Upk,p.

There are a variety of models available for the turbulent transport.

isotropized eddy viscosity transport model and has the general form

< UjUjUk >---- -- lit [< UiUj >,k -t- < Uiuk >,j -_- < UjUk >,i ].

Its size relative to production is an equivalent measure of its

(48)

The simplest one is an

(49)

Large scale skewness

An interesting statistic that indicates much about the underlying probability density function and

the aspects of turbulence structure and entrainment as well as transport is the large scale skewness.

The skewness is the third-order moment of the velocity field. It is defined as

3 2S(u ) = < uo > / < >3/2; (50)

in a temporal sense it represents the predominance of fluctuations above (positive) or below (neg-

ative) the local mean. As such it is related to the asymmetry of the probability density function

of the velocity fluctuations. It is a sensitive indicator of changes in the large scale structure. In a

spatial sense it represents the turbulent transport in the positive or negative c_ direction. It is a

statement about the direction of entrainment. For a Gaussian pdf So = O. From a more pragmatic

modeling point of view this quantity can be used to assess the validity of models for the turbulent

transport so essential in regions of the flow where production terms are not dominant.

Large scale flatness

Another statistic indicating facts about the underlying probability density function and aspects of

turbulence structure is the flatness (kurtosis). It is the fourth-order moment of the velocity field:

4 2 >2 (51)uo > / < uo •

The flatness is an indication of the occurrence of fluctuations far from the mean: it is an indicator

of the relative frequency of rare events. It has been related to the intermittency of the flow,

Io = 3/Ko. Intermittency is defined as the fraction of time the flow is turbulent versus laminar

and is important in the mixing regions at the edge of a turbulent region. For a Gaussian pdf

So = 0 and Ko = 3. Much use is made of the Gaussian value of the kurtosis, Ks = 3, in model

developments. The fact of the matter is that, because of intermittency, in the near wall region and

in the laminar/turbulent interracial regions the kurtosis can be as high as 10-40. Changes in these

quantities as function of additional strains or pressure gradients on the turbulence are indicative of

a change in the physics of turbulence processes at the periphery of flows.

7. Miscellaneous additional ideas and statistics

A few miscellaneous ideas not already accounted for which appear necessary from the viewpoint of

completeness are given.

The turbulent Reynolds number and the eddy viscosity metaphor

In the two-equation family of turbulence models substantial use of an eddy viscosity idea is made:
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typically defined as vt = c_,k2/E with c_, _ 0.09. The ratio of a turbulent eddy viscosity to the

molecular viscosity appears in the turbulent Reynolds number, Rt = ill/v, when the definitions

_2 = 2k and _2 = a(-_k)2 3/_2 are used: Rt = _4k2 with a = 1 thus vt/_' = c_,Rt. Rt is significant not

only as an indication of the bandwidth of the process but also indicates, in a mixing layer argument

context, the importance of turbulent versus molecular transport.

The Boussinesq eddy viscosity formulation is < uiuj >= -_ k _j- vt[U_,j +Uj,i ]. For a simple shear

flow

< uv >= - vtU1,2 • (52)

It is well known that, in only nominally complex flows, an eddy viscosity formulation does not

predict the Reynolds stresses correctly. This does not mean that one cannot predict many mean

quantities of interest using an eddy viscosity formulation. (I believe it was Gauss who said given

12 free constants he could construct an elephant (the quote is from Lumley (1978)).

As has been mentioned, in the equilibrium log-layer of a flat plate, where Pk/¢ = 1, it can be

argued that the one important Reynolds shear stress can be described by an eddy viscosity. It is

this singular success and its similarity to thin simple free shear layers in which production closely

balances dissipation in the dynamically significant portions of the flow that suggests the possibility

of an eddy viscosity. An argument no more universal than a flat plate.

It is easy to convince oneself of the inadequacy of an eddy viscosity hypothesis by measuring an

eddy viscosity from t_t =< uv > /U1,2 and comparing it to _'t = c_,k2/e. One will find that zeros

of < uv > and (/1,2 are rarely coincident in any flow that has some form of asymmetry. The

consequence of this is that the eddy viscosity defined as t_t = - < uv > /U1,2 varies between zero

and infinity in a substantially small portion of the flow. While vt is not useful as a predictor of the

Reynolds stresses in more complex flows it is useful in its nondimensional form, c_,Rt, as a relative

measure of the turbulent mixing.

The small scale skewness

This was mentioned earlier so the exposition will be brief. In equilibrium theories of turbulence,

for homogeneous isotropic turbulence the skewness, < ul, 3 > / < ul, 2 >3/2, is thought to be a

universal constant. (It is in fact slightly dependent on the Reynolds number.) Some researchers

take its attaining a value of -½ as an indication of the state of development of the cascade toward

some sort of equilibrium form. The skewness is the production mechanism for the dissipation.

In highly complex flows very little is known about the skewness. More details can be found in

Tavonlaris et al. (1978).

Estimating E

Physically the dissipation - the rate at which viscous forces dissipate the energy of the turbulence

- is often understood, in current models, as rate at which inviscid nonlinear processes cascade

energy to the smaller scales of the motion. It is this fact that is exploited in the arguments used in

many current turbulence models. It is a simple idea with several very important and even elegant

ramifications. The most important of which is that it allows one to ignore the details of the small

scale motions of the fluid. It is for this reason that so much time was spent on the questions of the
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existenceof a universalsmallscaleequilibrium.The cascaderate andthe dissipationrate arenot
equalin nonequilibriumsituations.

It is usual to estimatethe dissipationfrom the time traceof the velocityfield and Taylor'shy-
pothesis:in whichcase_ = 15v < u1,1 u1,1 >= 15_ < u,tu,t > /U 2 using the assumption of local

isotropy. Measurement of the dissipation in some complex flow situations may be difficult. A recent

review of various methods of measuring vorticity is given in Wallace and Foss (1995).

Alternatively, it is possible, assuming local isotropy, to obtain an estimate for the dissipation from

the trace of the Reynolds stress equations. For an incompressible flow

D k= <ujup> Uj,p [<puk>+ 1/2<UpUpUj > Re -lk,j],j _. (53)
Dt

In high Reynolds number flows some neglect the pressure flux in which case

D
D--t k = - < ujup > Uj,p- 1/2 < UjUjUp >,p- E. (54)

Sometimes the pressure flux is estimated using Lumleys (1978) < puk >= -I < ukq2 >" Note that

the pressure has been normalized by the density. Thus one only need measure the production, the

transport and the advection. A measurement of the large scale quantities can be used to produce

an estimate for the dissipation. In general graphs of these four quantities are called energy budgets

and are very useful for assessing the physics of any particular flow. A good sampling of energy

budgets is given by Rodi in Launder (1975). Tennekes and Lumley (1972) give some examples also.

It should be stressed that whatever measurement is being done at the very least an energy budget,

using the k equation should be made. The utility of relying on the governing equations, as obvious

as it seems, still seems to require amplification and demonstration, George (1990).

8. Synopsis, summary and sample
An attempt to draw all the key parameters into one short concise and cohesive summary with

examples is made. As the objective is to highlight physics all the parameters are nondimensional.

To make the relevance of the nondimensional parameters more concrete they are given for two

simple flows: the wake and the plane jet. These are exceedingly simple flows and the interesting

phenomena associated with a complex engineering flow are not present: the present purpose however

is to illustrate the utility of the nondimensional parameters to describe the flow. Quantitative

accuracy and model assessment are not the present subject. The object is to indicate how these

parameters are used.

The data in the accompanying figures comes from a Reynolds stress calculation for the plane jet

and the plane wake. The plane wake calculation was done using the standard Launder, Reece, and

Rodi (LRR) rapid strain model with a Daly and Harlow turbulent transport model. The plane

wake calculation was done using the pressure strain model by Speziale et al. (1990a) with a Daly

and Harlow turbulent transport model.

The horizontal axis in the figures is the cross-stream coordinate normalized by the "half width";

at y = 1 the axial velocity is half its maximum.
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The apparent singular behavior of some quantities at the edge of the jet, y > 2, is a result of a com-

bination of issues associated with the imposition of boundary conditions, numerical differentiation,

and low Reynolds number modeling issues and the inadequate modeling of the physics of the far

regions. For the round jet simulation this in the outer regions of the jet which are not dynamically

significant and this is not an important shortcoming. This may not be the case in complex jet flows

where entrainment and mixing with the ambient are the quantities required.

Small scale equilibrium criteria

Spatial/temporal spectral gap

Temporal spectral gap - shear

Parameter Limit

p1/2= , -_t >> 1

3R3/2_-ot >> Sk/_

4 k 2
Bandwidth: The R_ = _ is useful for indicating the bandwidth of the spectrum of the fluctua-

tions. This is crucial to understanding the adequacy of spectral gap assumptions and the associated

assumptions regarding the statistical equilibrium of the small scales. The turbulent Reynolds is
t

loosely related to the mean flow Reynolds number by: Rt = U--_-LRe where Re = UooL/v.

xlo'
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Figure 3: Statistics from a Reynolds stress calculation for the plane jet: spectral gap parameters.

As is seen in Figure 3, Rt ,-_ 10 4 vindicating assumptions regarding a separation of scales throughout

most of the jet. At the periphery of the jet the turbulent Reynolds number becomes small, Rt "_ 50

and many assumptions used in turbulence modeling are no longer tenable. The saving grace here is

that in many applications this region of the flow is not dynamically significant. This is seen by the

very small k in these regions. Unfortunately there are many flows in which the mixing across the

outer portions of the flow are important. The current turbulence models have problems in these

regions, as will become evident in the behavior of k and E at the periphery of the flows.

To give a counter-example to the very nice spectral gap that appears in the jet flow (implied by the

large turbulent Reynolds number) the same quantities are shown for the wake flow. The values are

much smaller and the assumption of a spectral gap and the implied isotropic small scale equilibrium

is not acceptable. The point is that the independence of the small scales of the motion from the

large scales is simply not adequate when the strain rate of the small scales is the same as that of

the large scales. One might describe this flow as only weakly turbulent.

Production to dissipation: The ratio of production to dissipation gives a measure of the impor-

tance of nonlocal effects; it indicates whether the local turbulence determines the local structure.
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Figure 4: Statistics from Reynolds stress calculation for the wake: spectral gap parameters.

In the figure for the jet flow the production to dissipation is seen to deviate from Pk/E _ 1 in the

central portions of the jet indicating that most of the energy of the turbulence is imported from

2
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Figure 5: Production to dissipation and relative time scales for the jet (solid line) and the wake.

Over a large portion of the jet flow, 0.5 < y < 2 - the most energetic portions of the flow - Pk/E "_ 1

indicative of a local equilibrium and thus a flow in which most of the turbulence is generated and

dissipated locally. This suggests that the local turbulent shear stress can be determined by local

quantities. In such a simple shear flow a Bousinesq eddy viscosity formulation will do fine.

Contrast this behavior to the wake flow in which production is about 20% less than dissipation over

most of the energetic portion of the wake. The wake is known to have a much larger dependence on

the initial conditions and this is consistent with the fact that turbulence produced is not dissipated

locally. Pk/s is a measure suggesting the need of a differential closure and more refined turbulent

transport models. An issue of some importance in complex flows.

In the outer jet regions the ratio drifts upwards in an unrealistic fashion reflecting the lack of

development of closures and boundary conditions for the dynamically insignificant portions of

simple jet flows.

A list of parameters relevant to the assessment of the nonequilibrium nature of the flow, a_j, Skis,

and Ti-lk/¢ - a characterization of the mean deformation along the lines of how long, how hard
and how fast - will be relevant to many high speed flows with rapid changes in the streamwise

direction. The point here is the more important nonlocal effects in time or space the less adequate

a local closure (eddy viscosity or algebraic stress model). The accompanying chart indicates values
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for whichthe deformationof the turbulence may be conceived as an equilibrium process.

Importance of nonequilibrium effects Parameter Limit

Production to dissipation Pk / E = 2 (k / ¢ ) bij Sij _ 1

Total strain aT aT > 4

Relative strain parameter

Imposed time scales

Sk/E
S-I(k/_)D/Dt S

Sk/_ ~ 5

Relative time scale TIS > 1

Total strain: The length of time the strain has been acting on the turbulence is

;a_j = Sijdt' (55)

where the differential is understood as following a mean fluid particle. The longer the strain has

been acting the more adequate the single-point structural equilibrium turbulence models, such as

the algebraic Reynolds stress models.

The relative strain rate: Sk/¢, can be interpreted either as the total amount of shear an eddy

experiences during its lifetime; as the magnitude of the deformation by the mean versus the de-

formation by the turbulence. For an equilibrium homogeneous shear flow Sk/e __ 6; in the figure

Sk/E ,,_ 0 near the axis due to symmetry of the mean flow; off axis it approaches a modest Sk/¢ _ 3.

The flow is therefore self consistent, within the class of flows for which turbulence models such as

this one, are useful.

Mean strain change rate: A closely related quantity in flows with imposed time scales would be

S-I(k/e)D/DtS and an indicator of the adequacy of the localness assumptions made in modeling

assumptions. The larger the number the more questionable the local approximation. This is

moderated by the strength of the strain which through its effect on the production of turbulence

will scramble the memory of the turbulence. A number characterizing this effect might be TIS or

equally well thought of as the total strain.

Natural time and length scales of the turbulence: As was mentioned one typically inter-

prets, modulo a coefficient of proportionality, k/¢ as an eddy decorrelation time (in units made

nondimensional by the maximum velocity difference and the half width). The figure indicates its

minimum in the inner regions of the jet indicating a rapid cascade of energy to smaller scales.

It drifts to higher values at the edges of the jet indicating a weaker cascade and a weaker (more

intermittent with higher flatness) turbulence.

Also shown in the same figure is a natural length scale, sometimes called the dissipation length

scale, for its definition from Kolmogorov scaling, ! = a(_k)3/2/e. It has been normMized by the

flow half width. It is seen, in both the flows, that _ scales very nicely with the half width of the

flow. The constant of proportionality has been taken to be unity, a = 1.
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Figure 6: Statistics from a Reynolds stress model calculation for the jet (solid line) and wake:

turbulence time and length scales.

Further characterization of the deformation Parameter Limit

Mean velocity gradients De f -1 < De f < 1

Extra strains stb

Mean deformation: Of substantial importance is the type of deformation the turbulence is un-

dergoing. Many of the nonequilibrium parameters given above also describe the mean deformation.

The deformation parameter, as normalized by Hunt (1992) is very useful:

Def = SijSij -- WijWij (56)

which varies between -1 _ Def _< 1 which corresponds to a pure rotation through a pure strain.

As jet and wake flows are, primarily, pure shear flow Def _.. 0 and is not shown.

Extra strains: Diverse strains and combinations thereof can have a stabilizing or destabilizing ef-

fect on the turbulence in different parts of the flow. For two-dimensional mean flows of aerodynamic

interest are the curvature and the streamwise acceleration parameters.

stb- U/R stb = bll -b22 U,s (57)
dU/dn b12 U,,_

Reynolds stress anisotropy: Further information about the turbulence can be found from the

anisotropy tensor,

bij = ( uiuj > 1_..2k - 5 (58)

and its invariants, II, III. The bounds on these quantities are given above and a presentation

in the form of an anisotropy invariant map, or Lumley triangle, is useful. The components bn

and b12 of bij are given in the figure. Also shown is the correlation P12 and two invariants of

the anisotropy tensor, II and F. From these three figures it is seen that the turbulence is more

isotropic in the central regions of the jet. For sake of comparison results from the homogeneous

shear, with Pk/_ _- 2, indicate bll _ 0.2 and b12 _ -0.16. (Note that the difference in coordinate

system accounts for the difference in sign.) At the periphery of the jet, y > 2.25, though not shown,

the calculation returns values for these quantities that are outside of the allowed range for reasons

already indicated.
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Figure 7: Statistics from a Reynolds stress model calculation for the jet and wake.

Correlation coefficient: In simple flows this is typically an uninteresting quantity; typically

about 0.5 - 0.8 or so. It is however something that must be bounded in magnitude by one;

p12 =< uv >/(< uu >< vv >)1/2 it is useful as an indication of the reliability of the calculation.

In more complex flows it becomes a more important quantity zeroes of this quantity indicating

changes in the stability of the flow.

Characterization of the turbulence

Reynolds stress anisotropy

Turbulence intensity

Dissipation anisotropy

Correlation coefficient

Parameter

II = -. bobl j

< UU >1/2 /U

II_ = --:;EijEij

P12

Limit
]

OS-IIS_
<<1

1
0<_ -II<_ 5
-1_#12_1

Two-point anisotropy L,_,,/3 Ll1,1 vs. L22,2

(2k_1121 UTurbulence intensity: From the figure it is seen that the turbulence intensity, _ / / , where

U is the local streamwise mean, becomes large at the periphery of the jet indicating the relative

importance of turbulent transport over mean advection. In regions such as this or in separated

flows, where turbulence fluctuations are much higher than the local mean flow, accurate turbulent

transport models for more complex flows are expected to be important if mixing between different
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streamsis to besought.Theintensityof the wakeis sosmallthat it doesnot showon theplot.

Inhomogeneity and transport

The mean deformation

The turbulence field

Relative length scales

Turbulent vs. molecular transport

Parameter

ev__s

Limit

<1

<1

<1

curt >> 1

Homogeneity of mean and turbulence fields : The mean deformation field is inhomogeneous

with respect to the turbulence length scale. In the inner regions this is due to the fact that S has

a zero on the symmetry axis. In the regions where production is important where the mean shear

is highest, (near y ,-_ 1), the inhomogeneity is modestly consistent with the Pk/_ _ 1 seen above.

The inhomogeneity increases again in the outer portions of the jet.

Measures of the inhomogeneity of the turbulence field are also shown. From the figure it is seen

that the gradients of the kinetic energy are getting large at the periphery of the jet where turbulent

transport is important. Recall that gradients in Reynolds stresses are the production mechanisms
for the third-order moments.
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Figure 8: Homogeneity statistics from a Reynolds stress model calculation for the plane jet.

A gloss on the high-lift aerofoil scenario: As a further concretization of these ideas a thought

experiment in a complex flow situation might be considered. Consider the high lift three-element

aerofoil. If the upstream flow is turbulent, a free stream turbulence problem, the upstream fluctu-

ations need to be characterized by their one and two point anisotropies. Free stream turbulence

has a strong effect on transition, skin friction and the Reynolds stresses in the outer portions of

the boundary layer. In the slat region between the first two elements there are strong curvature

and strong streamwise accelerations the effects of these deformations on the turbulence will be a

strong function of the anisotropy of the turbulence. The flow in this region is in all likelihood a

rapidly changing one as can be verified by the calculation of quantities such as Pk/_, Sk/_, Tllk/E

or aT- The Reynolds stresses in such a flow require treatment by RDT; on the other hand it may

well be that the turbulence does not have enough time to alter the mean flow so that the effects of

an inadequate turbulence model are mitigated. It should be kept in mind that the flow in the slat

drastically alters the initial conditions on the more slowly evolving turbulence downstream, regions

in which the turbulence is expected to play a more important role in the mean flow development.

Further downstream above the main element the effects of turbulent transport in the mixing of the

wake flow from the slat region with the growing boundary layer on the main element are important.
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Squire(1989)providesa surveyof these issues. This is also the case in the region above the third

element and wherever the outer portions of shear layers (in which production is less important than

transport) come together. In the reversed and separated flows off the rear element the turbulence

intensity is very high and transport is expected to play an important role in their development. In

these regions and also at high angles of attack near the separation streamline Reynolds stresses are

typically of the opposite sign as predicted by eddy viscosity models.

9. Conclusions

Kolmogorov (1941) suggested the possibility and the circumstances under which a turbulent flow

might behave in a universal fashion. The circumstances under which such an ideal turbulence

might occur include high turbulent Reynolds number, isotropy, temporal and spatial stationarity.

Such as turbulence characterized by [k, E, v], has been the archetypal idea underlying most turbu-

lence model closures. Complex flows, the subject of this article, do not in general conform to this

ideal. Real world effects cause substantial deviation from the universal behavior associated with

this ideal. A general turbulent flow can be expected to deviate from the ideal when there is 1)

no extended spectral gap necessary for the small scale statistical equilibrium, 2) a mean deforma-

tion, 3) nonstationarity, 4) anisotropy, 5) inhomogeneity, or 6) poorly correlated. Nonetheless the

engineering utility and adequacy of such a viewpoint has been both very successful and also very

misleading. This article has systematically outlined, in the incompressible aerodynamic context,

measures of departure from the ideal. This is in an effort to make possible a more realistic appraisal

and qualification of the different strategies for the computation of flows influenced by turbulence.

The single-point closure methods such as the two-equation or second-moment closures while seem-

ingly complicated really simplify to a few very simple ideas that are easily described by a few

simple parameters. The small number of parameters, all of which come from the measurements of

< uiuj >, < uiujuk >, Ui,j, Rt, and _ is not to be understood as an indication of the simplicity

of the subject as much as it is taken to be an indication of the simple minded (and potentially

inadequate) metaphors from kinetic theory applied to the problem of turbulence. A shorter list of

variables < uiuj >, Ui,j, and _ form the core of a relatively complete classification of a turbulent

flow; the relevant parameters are shown in the accompanying table.

It is hoped that this article will be understood in the following ways:

1) A consolidation and quantification of a number of ideas and their associated parameters with

which to understand and classify complex turbulent flows. It is hoped that this article will serve

as a guide in compiling more physically meaningful data and a more consistent presentation of

numerical and experimental data. If experimental data is compiled in the nondimensional fashion

recommended physical insight into the nature of the turbulence is more readily apparent.

2) Related to _hese issues is the possibility of assessing the underlying assumptions of a particular

turbulence model and thus to understand what sort of strategy will produce adequate or inadequate

results in a specific flow.

3) It is hoped that this document for those not familiar with this field will help sort out relevant

concepts and issues and thus be more able to evaluate the scientific merit and engineering adequacy
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of a particular methodology for a particular turbulent flow. This is also an effort to avoid the

inevitable disillusionment with the blind application of the current form of turbulent models to

flow situations which violate the premises on which the closures are based. This seems to be

particularly relevant at this time as more become discontent with the unpredictable performance

of the simple turbulence models in more complex flows.

It seems appropriate to close with a paraphrase from Hunt (1992). Hunt (1992) has reflected that

the fact that turbulence models work in situations in which they have no business working could

be a subject of research all by itself.

[ Basic nondimensional parameters I Parameter I

I Production to dissipation I Pk/s ]

I Relative strain parameter [ Sk/_ ]

[ Total strain parameter I aij = f Sijdt I

[ Extra strain parameters I stb 1

[ Imposed time scales I S-I(k/_)D/Dt S ]

[ Turbulence intensity ] < uu >,/2/U [

[ Anisotropy of Reynolds stresses I b,j,II, III [

I Turbulent Reynolds number I Re t = _k 2/u¢ 1

[ Temporal bandwidth ] (_'//2)1/2/S ]

I Anisotropy of the dissipation f d_j,IId, IIId ]

Acknowledgments

This was part of a "technology transfer" process and as such thanks are due to the plethora of

unsuspecting victims from whom I solicited comments on preliminary (painful) early drafts. I

would like to acknowledge particularly useful or acute editorial comments on the preliminary draft

from D. Bushnell, J. Cimbala, S. Girimaji, C. Rumsey, and B. Singer. I would also like to thank: B.

A. Younis of City University - London who during his stay at ICASE provided data from some of his

Reynolds stress calculations and J. Cimbala for providing results from his wake flow calculations.

References

Antonia, R.A., P.R. Spalart, P. Mariani (1994a). Effect of suction on the near wall anisotropy of a

turbulent boundary layer. Phys. Fluids. A 6: 430.

Antonia, R.A., L. Djenidi, P.R. Spalart (1994b). Anisotropy of the dissipation tensor in a turbulent

boundary layer. Phys. Fluids. A 6: 2475.

Batchelor, G.K. (1953). The theory of homogeneous turbulence. Cambridge University Press,

Great Britain.

Bradshaw, P. (1975). Review - Complex Turbulent Flows. Trans. ASME I: J. Fluids Engng

971:146.

33



Bradshaw,P. (1981).Complexstrain fields. Proceedings 1980-1981 AFOSR-HTTM Stan]ord Con-

ference on Complex Turbulent Flows, Stanford, CA.

Bradshaw, P., J.B. Perot (1993). A note on turbulent energy dissipation in the viscous wall region.

Phys. Fluids A 5:3305.

Bradshaw, P. (1987). Turbulent secondary flows. Ann. Rev. Fluid Mech. 15:429.

Bradshaw, P. (1988). Effects of extra strain rates, in "Near Wall Turbulence: 1988 Zoran Zaric

Memorial Conference". eds. S.J. Kline, N.H. Afgan., Hemisphere Publishing.

Champagne, F.H., V.G. Harris, S. Corrsin (1970). Experiments on nearly homogeneous turbulent

shear flow. J. Fluid Mech. 41: 81.

Clark, T.T., C. Zemach (1995). A spectral model applied to homogeneous turbulence. Phys. Fluids

7:1674.

Durbin, P.A., C.G. Speziale (1991). Local anisotropy in strained turbulence at high Reynolds

number. Trans ASME J. Fluids Engng. 113:707.

Gatski, T.B., C.G. Speziaie (1993). On explicit algebraic stress models for complex turbulent flows.

J. Fluid Mech. 254:59.

George, W.K. (1990). Governing equations, experiments, and the experimentalist. Exp'l Thermal
Fluid Sci. 3:557.

Girimaji, S. (1995). Fully explicit self consistent algebraic Reynolds stress model. ICASE Report

95-82, submitted J. Fluid Mech.

Hanjalic, K. (1994). Advanced turbulence closure models: a view of current status and future

prospects. Int. J. Heat Mass Transfer 15:178.

Hunt, J.C.R. (1973). A theory of turbulent flow round two-dimensional bluff bodies. J. Fluid Mech.

61:625.

Hunt, J.C.R. (1992). Developments in Computational Modeling of Turbulent Flows. In "Numerical

Simulation of Unsteady Flows and Transition to Turbulence", eds. O. Pironneau, W. Rodi, I.L.

Ryhming, A.M. Savill, Cambridge Univ. Press.

Hunt, J.C.R., D.J. Carruthers (1990). Rapid distortion theory and problems of turbulence. J.
Fluid Mech. 212:497.

Kassinos, S.C., W.C. Reynolds (1995). A structure based model for the rapid distortion of homo-

geneous turbulence. Report No. TF-61, Dept. Mech. Engng., Stanford U., Stanford, CA.

Launder, B.E. (1989). Second moment closure: present .... and future ? Int. J. Heat Fluid Flow

10:282.

34



Launder,B.E., G.J. Reece,W. Rodi (1975). Progressin the developmentof a Reynolds-stress
turbulenceclosure.J. Fluid Mech. 68: 537.

Launder, B.E., W. Rodi (1983). The turbulent wall jet - measurements and modeling. Ann. Rev.

Fluid Mech. 15:429.

Lee, M.J. (1989). Distortion of homogeneous turbulence by axisymmetric strain and dilatation.

Phys. Fluids. A9:1541.

Lee, M., J. Kim, P. Moin (1990). Structure of turbulence at high shear rate. J. Fluid Mech.

216:561.

Lumley, J.L. (1967). Rational approach to relations between motions of differing scales in turbulent

flows. Phys. Fluids. 10:1405.

Lumley, J.L.

Lumley, J.L.

Lumley, J.L.

Dept. MAE,

(1970). Towards a turbulence constitutive relationship. J. Fluid Mech. 41: 413.

(1978). Computational modeling of turbulent flows. Adv. Appld. Mech. 18:123.

(1984). Strange attractors, coherent structures and statistical approaches. FDA 84-14,

Cornel] Univ., Ithaca, NY.

Lumley, J.L. (1992). Some comments on turbulence. Phys. Fluids. A4:203.

Nakayama, A. (1987). Curvature and pressure gradient effects on a small defect wake. J. Fluid

Mech. 175: 413.

Narashima, R., K.R. Sreenivasan (1979). Relaminarization of fluid flows. Adv. App. Mech. 19:221.

Pearson, J.R.A. (1959). The effect of uniform distortion on weak homogeneous turbulence. J. Fluid
Mech. 5:274.

Pope, S.B. (1975). A more general effective viscosity hypothesis. J. Fluid Mech. 72:331.

Rodi, W. (1975). A review of experimental data of uniform density free boundary layers.

"Studies in Convection", ed. B.E. Launder, Academic Press.

In

Ristorcelli, J.R., J.L. Lumley, R. Abid (1995a). A rapid-pressure covariance representation con-

sistent with the Taylor-Proudman theorem materially-frame-indifferent in the 2D limit. ICASE

Report 94-01 J. Fluid Mechanics 292:111-152.

SpeziaJe, C.G. (1987). On nonlinear k- g and k- E models of turbulence. J. Fluid Mech. 178: 459.

Speziale, C.G., N.M.G. Mhuiris (1989b). On the prediction of equilibrium states in homogeneous

turbulence. J. Fluid Mech. 209: 591.

Speziale, C.G., S. Sarkar, T.B. Gatski (1990a). Modeling the pressure-strain correlation of turbu-

lence - an invariant dynamical systems approach. J. Fluid Mech. 227: 245.

Squire, L. C. (1989). Interaction between wakes and boundary layers. Prog. Aerospace Sci. 26:261.

35



Sreenivasan,K.R. (1984). On the scalingof the turbulenceenergydissipationrate. Phys. Fluids

A 27:1048.

Sreenivasan, K.R. (1994). Variable constants and small parameters in turbulent flows. Lecture

given at "Frontiers for Geophysical Turbulence and Large Eddy Simulation Workshop", Center for

Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM.

Sreenivasan, K.R. (1995). The energy dissipation in turbulent shear flows. Dept. Mechanical

Engng. Report, Yale University. To appear in "Developments in Fluid Mechanics and Aerospace

Sciences", edited by S.M. Deshpande, A. Prabhu, K.R. Sreenivasan and P.R. Viswanath, Interline

Publishers, pp. 159-193.

Taulbee D.B. (1992). An improved algebraic Reynolds stress model and corresponding nonlinear

stress model. Phys. Fluids A 4:2555.

Tavoularis, S., U. Karnik (1989). Further experiments on the evolution of turbulent stresses and

scales in uniformly sheared turbulence. J. Fluid Mech. 204: 457.

Tavoularis, S., J.C. Bennett, S. Corrsin (1978). Velocity derivative skewness in small Reynolds

number nearly isotropic turbulence. J. Fluid Mech. 88:63.

Tennekes, H., J.L. Lumley (1972). A first course in turbulence. MIT Press, Cambridge, MA.

Townsend, A.A. (1954). The uniform distortion of homogeneous turbulence. Quart. J. Mech.

Appld. Math 3:104.

Townsend, A.A. (1976). The structure of turbulent shear flows. Cambridge Univ. Press.

Wallace, J.M., 3.F. Foss (1995). The measurement of vorticity in turbulent flows. Ann. Rev. Fluid

Mech. 27:469.

36





Form Approved

REPORT DOCUMENTATION PAGE OMB No 0704-0Z88

Pub c report ng burden for th s collection of nformat on s estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaininl_ the data needed, and comp et ng and rev ewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, mcludingsuggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204. Arlington.VA 22202-4302, and to the Of_ce of Management and Budget. Paperwork Reduction Project (0704-0188). Washington, DC 20503

). AGENCY USE ONLY(Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

December 1995 Contractor Report

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

DIAGNOSTIC STATISTICS FOR THE ASSESSMENT AND CHAR-
ACTERIZATION OF COMPLEX TURBULENT FLOWS

6. AUTHOR(S)

J. R. Ristorcelli

7. PERFORMING ORGANIZATION NAME(S) AND AODRESS(ES)

Institute for Computer Applications in Science

and Engineering

Mail Stop 132C, NASA Langley Research Center

Hampton, VA 23681-0001

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Langley Research Center
Hampton, VA 23681-0001

C NAS1-19480
WU 505-90-52-01

8. PERFORMING ORGANIZATION

REPORT NUMBER

ICASE Report No. 95-67

]0. SPONSORING/MONITORING

AGENCY REPORT NUMBER

NASA CR-198221
ICASE Report No. 95-67

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: Dennis M. Bushnell
Final Report
Submitted to Journal of Fluids Engineering

12a. DISTRIBUTION/AVAILABILITY STATEMENT

U nclassified-U nlimited

]2b. DISTRIBUTION CODE

Subject Category 34

i 13. ABSTRACT (Maximum 200 words)

A simple parameterization scheme fora complex turbulent flow using nondimensional parameters coming from
the Reynolds stress equations is given. Definitions and brief descriptions of the physical significance of several
nondimensional parameters that are used to characterize turbulence from the viewpoint of single-point turbulence

closures are given. These nondimensional parameters reflect measures ot 1) the spectral band width of the turbulence,

2) deviations from the ideal Kolmogorov behavior, 3) the relative magnitude, orientation, and temporal duration of
the deformation to which the turbulence is subjected, 4) one and two-point measures of the large and small scale

anisotropy of the turbulence and 5) inhomogeneity. This is an attempt to create a more systematic methodology

for the diagnosis and classification of turbulent flows as well as in the development, validation and application of

turbulence model strategies. The parameters serve also to indicate the adequacy of various assumptions made in

single-point turbulence models and in suggesting the appropriate turbulence strategy for a particular complex flow.

The compilation will be of interest to experimentalists and to those involved in either computing turbulent flows or
whose interests lies in verifying the adequacy of the phenomenological beliefs used in turbulence closures.

14. SUBJECT TERMS

Turbulence Models; Complex Turbulent Flows

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION

OF REPORT OF THIS PAGE

Unclassifled Unclassified

NSN 7540-01-2110-$500

19. SECURITY CLASSIFICATION

OF ABSTRACT

15. NUMBER OF PAGES

38
16. PRICE CODE

A03

20. LIMITATION

OF ABSTRACT

Standard Form 298(Rev. 2-89)
PrescribedbyANSI Std Z3_18
298-102






